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The author employs the methodsoftensor calculus to investigate the existence of linear 
integrals, and uses an example to show that a system can have a force function without 

possessing a linear integral [1]. 

1. Let the kinetic energy of a holonomic system be given by 

T 7 ‘12~~~~. rl“ rl” 

and the generalized forces by Q,. Here and in the following the Greek indices assume the 

values of 1, 2, 3, . .., n , and a dot ( l ) denotes a derivative with respect to time t. 
Equations of motion of the system in the contravariant nota- 

tion have the form 
,,P” + r;,&+L’ --. QP (1.2) 

Q” -= go’ Q, 

fiqP /at = Qp (1.2) 

Fig. 1 Let us consider the following simple example. Suppose the 

point M moves under the action of a central force. We shall 

choose the radius vector $ = r and the polar angle cl2 7 (r as the variables. Assuming 
that m = 1, we have 2 T = 9’ + rz(p2’, Q1 =z F2, Q2 = o 

Let us now determine PC,,. We find that (Fig. 1) 

;r = - T, r,z, = l/r, r;, = T’;a = 0 22 
Assume now that the system has a linear first integral 

h,qX. = C, C = const 

Differentiating it we obtain 

Gh,qX’ + h,6qx’ = 0 
This and (1.2) yield 

&ldt qX’ + h,QX = 0 
which together with the relation 

Gh,/dt = Vph,qQ 

after necessary transformations gives 

Vph,qP’qX’ $ h,QX = 0 

From the latter relation we obtain 
V,h, $- V,hp == 0 (1.3) 

h,Qx = 0 (1.4) 

Consequently condition (1.4) is both, necessary and sufficient for ixqx = C to be the 
first integral of the system. The first condition means that V,h, is a skew symmetric 
tensor and the second one, that $, and Q, are mutually perpendicular. In addition, the 
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first condition is independent of Q, and depends only on the form of 2T. 
In finding the linear integrals we encounter the following two problems. Firstly, we 

must find all covariant vectors whose covariant derivatives are skew symmetric ; seondly, 

out of these vectors we must separate those perpendicular to the vector of generalized 

forces Q,. 
Let us return to our original example and take the vector hi = 0, & = F. Direct com- 

putation yields 
VA= 0, V!Ja=O, VAa=r, V&=--r 

From this it follows that the first condition of (1.4) is satisfied. The second condition 

of (1.4) together with the relations & = 0, h, = ra; Qi = FJra and Qs = 0 now yields 

h,QX= F&a.O+P.O=O 

Using the conditions (1.4) we can now conclude that rscp’= C is a linear integral. 

Since ‘p is an ignorable coordinate,the above integral can be obtained from Lagrange’s 

equations. We can also adopt a different approach using the rectangular coordinates 
Q’ = 5 and @’ = y of the point M as parameters. The system will then have an ignorable 
coordinate, though possessing a linear integral 

yz’ - zy’ = c 

We return to conditions (1 4) to investigate the existence of linear integrals in the case 

when the system has ‘no ignorable coordinate. Let us set A,_,ix = epx. From(1.4) follows 
’ epX = - exp, 1.e. the tensor epx is skew symmetric. Performing absolute differentiation 

we obtain 
VpV&, = Vpeyp (1.5) 

Then we have 

V,V&, - V,V& = Vpevp = RpJ& 

On the other hand 
V,V,h, - V,V,& = Vvepv = RYPV@5 

Differentiating once again we obtain 

vvvpevp = V&? A, + R,,pP V”kP 

V&jr,, = V&p? h, + R,$‘V,h,, 

Adding the left-and right-hand sides respectively, we find 

R WV yLp -t.R"pp*%* =VvR,vpp$ +VpRvpv~L.hg+RpvpPeYLL+RypVLLePIL 

and finally 
(V&pP f vpRvpvP) A, = 2 (RVpV” epp + RYppp e,,) 

The number of these equations coincides with the number of the real components of 
the bivector e,,,_ Since the system is linear in ep, we can obtain So as a linear com- 
bination from hp - ep,, = tow%. 

Inserting the expressions obtained into the first condition of (1.4) we arrive at 

Vphx= 0 ‘h PX .J (i -7) 

Thus the question of solvability of our problem reduces to the process of solving a sys- 
tem of partial differential equations. Let us construct the condition of integrability 

V&h, - V&A, = Ry.,$ h, = oyx” “$ L, - opxp o$%~+ (V,o,,’ - V,o,,‘) I P 

The relations obtained must be fulfilled in order for the linear integral to exist and 
form together with the second equation of (1.4). the conditions of existence of a solution 
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of the given type. 
Let us see how the conditions (1.4) change when the system has an ignorabb coordinate 

pP1. In this case h, = gvccl, so that 
&! ag 

V&X 4 V&Y = V&& + V&h0 
*I*0 

= - - I:, gppL) +-$ - I:, g,, &Y 

where the differentiation over the index p. is not performed. By the theorem of Bicci we 

have 

in this case condition (1.3) becomes 

and from this 
8T 1 @K” -=-- 

ap 2 aqb 9K~4v’ = 0 

The second condition of (1.4) can be written as 

hKQK = gpowQx = Q,, = * 

Finally we find that 8T { t3qI*o = 0 and Q,, = 0 must hold, if qplis an ignorable coordinate, 
These conditions are well known in analytical mechanics. The problem of existence of 

“latent” linear integrals can also be tackled in a different manner. Second equation of 
(1.4) upon absolute differentiation yields 

*Pz 
Fig. 2 

V ,h,QX+~,V,Qx=~, V &,QP + h pV XQP = 0 

Multiplying the first equation by QP and the second one 

by 0% and adding, we obtain 

(vKh,+vp~,) QKQ"+~,QPV,QK+ hpQK%QP= 
= 2L,Q”V,Q” = 0 (i.8) 

We have thus obtained a different equation in h,. These 

arguments are applicable if at least one of the coefficients 
of Q, + 0. The process leading to Eq. (1.8) can be applied 

to the equation itself repeatedly ad infinitum. If me result- 
ing linear equations are incompatible, the system has no 
solution. Otherwise these equations serve only to restrict 

the range of variation of h,. 
To illustrate the methods discussed we shall consider an example. A double mathe- 

matical pendulum consists of two heavy rods OA and AB , hinged cylindrically at the 

point A and suspended at the point 0. We assume that 1 OA 1 = 1 AB 1 = 2r and they 

are of equal mass m (Fig. 2). 
Expressions for the kinetic energy, principal moments of inertia and the potential energy 

are, respectively, 2 T = A$9 + B&z + 2C COS (0 - q)&'" 

A =-$d. B = $- mr2, C = 2mr2, U = 3mgr COS ‘p + mgr COS ft 

Setting q1 = 0 and q2 = rp we obtain the following expressions for rFi 

rnr__-r - 
22 

2_ ~sin@-9cos@---cp) _- 

AB-i?cos2(f3-q)j 

l-l=’ = MAC sin (0 - ‘49 
- Pcos2(t3 --9) ’ 

I_ 

-_Csin(B--9) 
rn2 = AB 

- C2COS2(9 - cp) 
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The remaining Tfj = 0. 
Let us find the components of the metric tensor R’$. As we know from p] 

Rlu’ = R& = 
c4&~(13+)- I!,? ABco@(e- cp) 

(AB - ca co@ (0 - cp))” 

Expression (1.6) now becomes 

iVIRrlJ + &R&l 5j = 2 [ RUI’IZ~, + Rms’~ I= 2 [&I’ i- h21~1z = 0 

Keeping in mind that Rml = - Ran2, we find 

giL [ VlRrtsk + V~Rtsrkl ‘j = 0 

which can be transformed to yield finally 

8’ [VIR,lsk + V~R,,,k:l = g”VlRzlel+ gj2V Rlzla 
so that 

gikVk Rlzlzhj = 0 0.9) 

Relations (1.4) and (1.9) represent a system of linear equations in 5. The condition 

of existance of solutions has the form 
Q, = PV ,Rms (1.10) 

Further 
aRl.212 

-- VlRnlz = aql rlllRlzla - rlllRlzlt 

aRl%lZ 
VSR -- 1212 = a42 raesRlelz - rz22Rlels 

Using 
rzaa = -rlll, Rlzlz = gp,RluP = f (0 - (P) 

we find 

aRlur 
- = f’ (0 - cph 

aRlnls 

ae 
-=-f’(t3-ql) 

acp 

V1R1vz = - V&zls (1.11) 

Condition (1.9) in the expanded form becomes 

gllVIR1dl + g=%Rl&.p + glzVgR&.l + g”VzRmzhe = 0 

Let us assume that VzRm= 0 , then 

vd?Rau = g2pV&lP = 0, V&211 = glpVsRnlP = 0 

Since the determinant of this system is different from zero, we have 

VeRlgl’ = V&ua = 0 
But 

VoR& = _!Z$$;O 

The contradiction obtained shows that 

Simplifying we obtain 
VtRlala # 0 

(P - P) J.1+ (-g" + g4l) hz= 0 

from which we have 

L=+(B+Ccos(0-cp)), n,=$(A+Ceos(e-q(P)) (i.12) 
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Here 
a, = B, gz, = A, glz = g,, = c cos (e - v) 

67 l1 = &z / At gx2 = gzl =I - &, / A, ga2 = g,, / A, A = AB - @co,2 (0 _ v) 

Direct computation shows that the vector 

& = B + C cos (0 - cp), h, = A + C cos (0 - cp) (1.13) 

satisfies the condition (1.4), namely 

VA= v2A.2 = 0, v1a2+ V2h1= 0 

Since all solutions of the system are given in the form (1.12), any other solution must 
be collinear with (1.13) so that uk = I&. 

We shall now show that v = const. Indeed 

vqLI= Vlvhl+ v~Vlhl=Vlv~hl so 

V2p2=V2vh2+v572h2=V2vh2=0 (1.14) 

vl~2 + VW= v1va2 + vvla2 -I- vzval + vv2al = vlva2 + vzval = 0 
The following cases are possible: 

1) let h, # 0, h, # 0; then 

v1v= av /a0 =o, v2v=avjacp=o 
consequently v = const. 

2) let h, = 0, hp # 0 or vice versa ; then 

vzv= 0, v1v5=0 

i. e. A,v = 0, which brings us back to the case (1). 

3) the case h, = & = 0 is of no interest. 

We have thus shown that v = const. 

Other solutions of Eq.(l 3) exist appart from (1.13), but they can all be obtained by 
multiplying the latter solution by an arbitrary constant. 

To investigate the existence of a linear integral we shall turn to condition (1.10) 

Qr = pV1R1212, Q2 = pV2R1212 = - pVlRlzl2 

Therefore Q1 = - Q2 must hold. Keeping in mind the expression for the kinetic energy 

we obtain au au 
Ql= ae -=_.- mgr sin 0, QZ = x = - 3mgr sin CP, QI#Qz 

Thus the system has no linear integral, although it has a force function. 

BIBLIOGRAPHY 

1. Berezkin. E. N., Lecture on Theoretical Mechanics, Pt. 2. M., Izd. MGU, 1968. 

2. Rashevskii, P. K., Riemannian Geometry and Tensor Analysis., h4. “Nauka”, 

1967. 

3. Synge, I. L., Tensor Methods of Dynamics (Russian translation).M. , Izd. inostr. 

lit., 1947. 

Translated by L. K. 


